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Process of transfer of electrons in a gallium arsenide running-wave amplifier with a Schottky barrier has 

been investigated. Simulation of the process has been implemented by the Monte Carlo method with the use 

of the three-valley (FLX) model of the GaAs conduction band with account for the nonparabolicity of the 

bands, scattering on phonons, and transport between valleys. The increment of spatial-charge wave (SCW) 

has been calculated; it has been shown that the amplification in such a device can be substantially greater 

than in a beam-instability amplifier. 

Introduction. Advancing into the area of millimeter and submillimeter waves and striving for further 

miniaturization and integration of functions of elements within a single monolithic circuit are the main tendencies 

in the development of superhigh-frequency solid-state electronics. Precisely this and a number  of other 

considerations [ 1, 2 ] produce great interest in designing and investigating HHT devices containing active elements 

with distributed parameters. 
Nowadays an active search for the possibilities of amplifying electromagnetic waves in distributed structures 

on the basis of n-GaAs-type semiconductors with transport of electrons between valleys [3 ] along with works in 

the field of creating HHT amplifiers on Gunn diodes is being conducted. Two basictypes of amplifiers on such 

structures, which differ by orientation of the wave vector k relative to the drift of the carriers v 0 [41, are known. 

Proximity of the phase velocity of the wave of the carriers to the drift velocity is the characteristic property for 

structures with lengthwise drift (when v 0 II k). In structures with transverse drift, when v0-1- k, propagation of a 

wave takes place with a velocity close to the speed of light in the medium, and the effect of amplification of an 

electromagnetic wave is seen in the case of coincidence of the transverse component of the electric field with the 

direction of the drift of the carriers in a semiconductor with negative differential conductivity. 

Lengthwise-drift devices based of the effects of amplification of waves of the spatial charge are of greatest 

practical interest nowadays. Devices of this type transform the electromagnetic wave of the spatial charge into a 

spatial-charge wave that propagates in the direction parallel to the constant electric field, amplify it, and then 

transform it back into an electromagnetic wave. Such structures in the most cases are planar wave-conducting 

devices on gallium arsenide with a decelerating structure of one or another configuration and a cathode section in 

the form of a Schottky barrier whose injection coefficient can be controlled. 

Until recently, simulation of a spatial-charge running-wave amplifier was limited mostly to investigation of 

propagation of waves in a flat waveguide with drift of the carriers [4-6 ]. Incidentally a full analysis of the 

functioning of such a device and its optimization are impossible without sophisticated treatment of the mechanism 

of injection of electrons from the Schottky barrier and evolution of the beam during interaction with the spatial- 

charge wave. Precisely this constitutes the subject matter of this work. 

Model and Basic Relations. As was shown in a number of our works [7, 8 ], during injection of electrons 

from the quantum well, amplification of spatial-charge waves can be produced due to beam instability that occurs 
in a 3D semiconducting plasma or in a 2D electron gas. Since the velocities of the injected electrons in such devices 
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Fig. 1. Schematic representation of the device: 1) grating, 2) Ti contact, 3) 

gallium arsenide crystal. 

are about one order of magnitude greater than the drift velocities of electrons in a semiconductor crystal, the range 

of oscillations being amplified lies in the area of several hundreds of gigahertz. But as a result of the intense 

scattering that occurs in a semiconductor, such a beam, as our calculation has shown, penetrates its depth a short 

distance of 10 -5 cm, which makes it impossible to reach greater amplification coefficients. Nevertheless, the 

distribution function of the electrons after "resolution" of the beam finds itself shifted relative to the Maxwell 

distribution, making it possible to obtain an amplification effect similar to the beam-instability effect at frequences 

that are an order of magnitude less by virtue of the fact that the drift velocities of the electrons are less than the 

initial value of the velocity of the electrons being injected. Amplifiers that work on this principle are called the 

running-wave amplifiers. Being exceeded in frequency by beam-instability amplifiers, they have at the same time 

a number of advantages. 

It is known that as the requirements imposed by extending the frequency band used for information 

transmission become more stringent, and as radar technology progresses, the need for high-frequency devices with 

a small capacitance between the electrodes grows. Designers of the devices are able to resolve the problem by 

increasing the distance between the electrodes. In avalanche diodes (AD) and Gunn diodes these distances may 
be increased as long as the time of flight of an electron from the cathode to the anode remains approximately equal 

to the period of the working oscillation. For precisely this reason both AD and Gunn diodes are able to operate 

successfully up to frequences of about 100 GHz. But, since these devices are diodes, their operating characteristics 

depend on the layout to a very great extent. A running-wave amplifier may be designed in such a way [3 ] that it 

would resemble a double-cavity klystron by its internal connections of input and output, and use of a spatial-charge 

wave that runs between the cathode and the anode makes it possible to obtain a time of flight between the cathode 

and the anode that is many times greater than the period of the signal. The spatial-charge wave may grow 

severalfold, but not even this is the main advantage of this amplifier; the main advantage is the increased distance 

run by the wave, since with a large distance the capacitance between the input and the output is low, which is 

necessary to ensure stability and wide-bandness of the amplifier. 

Thus, we have the microstructure represented schematically in Fig. 1. The grating in it can be created by 

methods similar to the ones suggested in [9 ]. Falling on the grating from outside, the microwave field produces a 

spatial-charge wave, with wave number k equal to the grating's wave number 2~/l, in the semiconductor layer of 

the structure considered. If the velocity distribution of the particles in the phase-velocity region of the wave turns 

out to be an increasing function, the Landau damping for this wave gives way to amplification. The mechanism of 

the latter is the same here as in the case of beam unstability: the running wave results in redistribution of electrons 

in space in such a way that areas with increased concentration of them appear. If this spatial charge is forced to 

move under an applied external field in the direction of the wave with a velocity greater than the phase velocity of 

the latter, it will radiate similar to free electrons. Here, amplification is caused by resonance exchange of energy 

between the wave and the particles, which results in growth of the wave amplitude due to the condition (df/dv)v~/k 
> 0 .  
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A source of electrons that creates beams with a density of the particles comparable to the density of the 
semiconductor's plasma is a sufficiently effective injector. This can be reached only if the Schottky barrier is narrow 

enough. As is known [10], the potential barrier is narrowed when the semiconductor is highly alloyed; here a 

narrow, for the width of the spatial charge, portion adjacent to the electrode [11 ] is enough to alloy for narrowing 

of the potential barrier between the metal and the semiconductor. 

We approximated the shape of the potential barrier in accordance with [10 ] with account for image forces: 

2 2 
( L )  e ~o(x)=(~o 0 - e L / )  l - - 4%'--x + e U + ~ u  s .  

The width of the Schottky layer is defined by the relation [10 ] 

! / 2  

' con ) 

In subsequent calculations the external voltage imposed on the Schottky layer was taken rather large, but 

not the breakdown, and equal to 1 V. The equilibrium concentrations of electrons within the region adjacent to the 
electrode ncon and in the volume of the semiconductor ~s were, respectively, 1020 and 10 l? cm -a,  and the 

temperature T = 300 K. The value ~s of the Fermi level, calculated by the Shockley method, with these values of 
the parameters equals to 0.05 eV, L = 5.1.10 .7  cm, and e s of gallium arsenide is 13.5. 

For the considered injector to be effective, the height of the potential barrier on the metal-dielectric bound- 
ary and the work function of the metal must be minimum. Among the least exotic metals titanium satisfies these 

conditions. The work function and the height of the potential barrier for it amount to 3.83 and 0.74 eV, respectively 

[13 ]. Then, the position of the Fermi level in titanium is given by the following relations: 

J°F = g°F0 I - - ' ~ ' [ ~ , ; ~ 0  ) , $ " F 0 = ~  ' n m = N A  

and it amounts to a value of 5.3 eV with a concentration of electrons in the metal of 5.66- I022 cm -3, 

With account for image forces the height of the Schottky potential barrier calculated relative to the zero 

energy in titanium (5.37 eV less than the Fermi level of Ti) amounts to 5.89 eV at maximum. 

The initial energy distribution of electrons in the metal is defined by the relation [14 ] 

. 4T,¢ 
dn (~') = - '~  (2rod) 3 /2  ( _e.Fl (I) 

l+ex  I ) 

To calculate probabilities of tunneling of electrons through the potential barrier, the WKB approximation 

was used [151: 

(" / 2 y ~ / 2 r n , ~ _ ¢ x )  a x  . (2) 
D ( ~ ° ) = e x p  - ~ X l  

However in the case where the particle has an energy greater than the barrier, it is more convenient to use the 

following formula instead of relation (2): 

2 (k2e - ab) 2 tan 2 ~o /% (b - a) 2 + 
D ( 4 ' )  = 1 - 

2 2 
k e (b + a) 2 + (k e + ab) a tan z~o 
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Fig. 2. ~x-distribution of electrons of a beam for the three valleys in a GaAs 

crystal immediately after tunneling through the Schottky barrier from Ti. P, 

arbitrary units; g'x, eV. 

Here the initial wave vector of the particle is ke = 1 /h (¢ -2 - -~  g'"x), a and b are the lengths of the wave vectors of the 

particles at the dividing lines of the barrier, in our case: 

1 I L 

0 

Moreover, the influence of the potential step produced by the bottom of the conduction band in the 

semiconductor has been taken in consideration in the calculation of probabilities of tunneling through the Schottky 

barrier [16 ]. For ~'x above the bottom of the conduction band 

k e - b] 

= (ko + b) 

In simulation of processes of transfer of charge in gallium arsenide we used the three-valley (I-'LX) model 

of its conduction band. In accordance with this model three types of valleys were taken in consideration in the 

calculation: P, L, and X, the gaps between the valleys were Ar-L = 0.31 eV, Arx = 0.48 eV, and the effective masses 

were m r = 0.067mo, m[ = 0.23mo, rn~ = 0.43m0 [17 ]. As was already shown above, only some of the energy related 

to the motion of the electron toward the barrier is taken into consideration in tunneling through the Schottky 

potential barrier. As a result of the greater mass of electrons in the X- and L-valleys, and because these "heavy" 

valleys form from several equivalent ones, the density of states in the conduction band of GaAs increases sharply 

from the lower F-valley to the upper X-valley. Therefore it was assumed that the overwhelming majority of electrons 

with energy higher than the gap A between the valleys would reach the upper valley. 

Thus, we have calculated the energy distributions of, in essence, three "beams" corresponding to the three 

valleys F, L, and X, as a result of which the final output beam of electrons of the injector has gained three 

corresponding components. The densities of the beam entering the GaAs and of its partial components were found 
proceeding from the density of electrons in the metal and the ratio between the particles that penetrated the barrier 

and the particles that are on their way toward it. Calculated distributions are presented in Fig. 2. 

As a result of numerical experiments on tunneling through the Schottky barrier of Ti/GaAs,  energy 

distributions of electrons for different directions in the initial beam were obtained in the form of tables (see Fig. 

2). The subsequent evolution of the distribution function of electrons during the movement of the beam through 

the crystal was simulated with the aid of the Monte Carlo method. 

As mentioned above, the three-valley model of the conduction band of gallium arsenide was used in the 

work. The predominance of one or another type of scattering in the semiconductor crystal depends on the possession 

of the electron by one of the valleys and on the magnitude of the electric field. The electric field in the crystal 
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considered can be regulated over a wide range by varying the external  voltage supplied to the device and the 

thickness of the semiconducting substrate. Electric fields insufficient for collision ionization (up to 100 kV/cm) 

were investigated in this work. Under  such conditions three types of scattering are the most important  in gallium 

arsenide: on acoustic phonons, on polar optical phonons, and scattering between the valleys [18 ]. 

The  strong dependence of the probabilities of the chosen types of scattering on the shape of the valleys 

required acount for their nonparabolicity. The  coefficients of nonparabolicity of the gallium arsenide valleys were 

calculated starting from the width of the forbidden zone and amounted to a r  = 0.645 eV - l ,  a L = 0.538 eV -1,  a x  

= 0.493 eV -1 

Description of the interaction between an electron and an acoustical phonon is one of the most complicated 

and laborious problems in the Monte Carlo simulation, due to the dependence of the direction of the final pulse of 

the particle on the magnitude and direction of its initial pulse. For the scattering probabili ty with a nonparabolic  

dispersion law we used the following relation (see [18 ]): 

_2 • 
+ ~def m 1 

= ke  

± --q7 x_+ (Nq 
qmin 

+ " ~  qZA+-Io dq, 

where the superscript "plus" relates to interaction with absorption of an acoustical phonon,  and "minus," with 

ejection; the longitudinal speed of sound Sl = 5 .2 .10  s cm/sec;  A -+, 1 o are parameters  related to the account for 

nonparabolicity: 

a -+ = I + I o  = 

(1 + 2a 6' ± a 7/s/q) 2 a ~/2q2 

2m* 
+ 

(1 + i t -  

The  following values were used in the calculations for the constants of the deformation potential  in each 

of the three valleys: E~e f = 7.0 eV [181, X~e r = 9.2 eV, EXef = 9.3 eV [19 ]. 
The  probabili ty of scattering on optical phonons has the form [18 [ 

+ e 1i Wopm 1 1 1 1 
W~p.o (ke)  --  7i 2 N°~op + - -  .~_ × 

2 7ike (1 + 2 a g  ) 

× WoP ]2 In + ?i2kek+- I [1 + 2ad' ± a ~/ qmax a 

qmin m 

Here  

NoJo p 1 + , + k + - = exp (h Wop/kn T) - 1 ' qmin = ± ( k+-- - ke) qmax = ke + , 

~k---  = ~ / 2 m ~  ( ~ " _  ~OJop ) (1 + a [ 6 ' ± / i W o p ]  ) , 

m d (mlm2t)1/3 is the effective mass of the density of states according to H e r r i n g -V o ig t  [20]. 

Amplification of an SCW. The  established velocity distribution of electrons in the crystal  with injection of 

electrons from the Schottky barrier,  which we calculated by the Monte Carlo method using the three-val ley model 

of the gallium arsenide conduction band for one of the temperatures,  is presented in Fig. 3. 

In terms of the Boltzmann distribution law the interaction between the drifting flow of electrons and the 

running wave can be described by the following system of equations [21, 22 ]: 
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Fig. 3. Velocity distribution of electrons in a drift ing beam in GaAs at the 

temperature  T = 200 K: 1) E = 1.5 kV/cm,  2) 6.0, 3) 15.0, 4) 30.0. v, cm/sec .  

Fig. 4. Graphical solution of the system of equations (4): 1) geometric location 

of the zeroes of the first equation of system (4), 2) the same for the second 

equation, 3) region of existance of a positive solution. 7, 6, sec -1. 

dfi dfi (r/m;) E -~v = i ' ._~. + V ._~.r + Ofi /i fi 0 

where ~ ,  i = 1, 2 (i = 1 relates to the "shifted" distribution function, i = 2 to the "unshifted"),  a re  undis turbed  

distribution functions without the spatial-charge wave; m~ = m~. 

Dispersion relations for the collective oscillation modes of the "p lasma-dr i f t ing  flow of electrons" system 

can be obtained using the s tandard  procedure [22, 23 ] and has the form 

4Jre 2 afi°/av 
1 + - -  X 7 -1 d v = O .  (3) 

esk i -o~ co - kv + ir i 

Let us consider  the frequency to to be a complex quanti ty and set to -- kv o + ~ + / 7 ,  where kvo = coo and the  f requency 

co o corresponds to the exact phase resonance; 6 is the tuning out; y = Im co + r -1 is the increment.  Separat ing the 

real and imaginary parts in (3), we arrive at the following system of equations: 

1 + - -  
4~e2 7 coO+~3--kv IofO ofO 1 

- .  + = O ,  

+ kv)  d v = O .  

(4) 

For numerical solution of (4) we used the velocity distributions of electrons that  resul ted from the simulation by  

the Monte Carlo method (Fig. 3). 

Each of Eqs. (4) defines some curve Fi(6, y) = 0 in the plane (6, y), and,  therefore,  if the two curves meet  

at some point P with coordinates (6', y ') ,  this pair of numbers  satisfies system (4). T h e  numerical solution of (4) 

is obtained by means of a program that constructs a graph of F i on the interval [6in, 6fin ]; one more program, which 

calculates the zeroes of Fi(~3, y) at the point 6 E [~in, ~fin ] on some interval [}Pin, 7fin ], is used for this. Results  of 

the numerical solution of system (4) are presented in Fig. 4, where curves 1 are zeroes of the first equation,  and  

curves 2 are  zeroes of the second equation. The  point 3 of their  intersection defines the values of the  increment  

and the tuning out, which amount  to (3 = - 1 . 2 2 - 1 0  I2 sec -1,  y = 9.0.1011 sec -1.  
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The amplification of an SCW is defined by the relation G = 8.68(y/co0)k 0. For the grating period I = 
10 -4 cm and the frequency co o = 2.76.1012 sec- l  this quantity amounted to 4540 dB/mm. The amplification of an 

electromagnetic wave can be found by a complete eleclrodynamic analysis of its propagation in the waveguide with 

the SCW moving in it, which goes beyond this work. But, starting from results of [4 ], the limiting value of this 
amplification may be thought of as approximately the number of times less than the indicated value of G that the 

drift velocity v 0 is less than the speed of light in the medium (in the given case, GaAs), that is, it does not exceed 

24 dB/mm. 
The work was carried out with financial support of the Foundation for Fundamental Research of the 

Republic of Belarus, grants No. 006.012 and No. MP96-50. 

N O T A T I O N  

k, k, wave vector of the spatial-charge wave and its magnitud, respectively; v0, drift velocity of electrons 
in the injected beam; l, grating period; v, v, velocity of electrons in the semiconductor crystal and its magnitude; 

r, magnitude of the radius vector of the charged particle; .f, velocity distribution function of electrons in the 

semiconductor crystal; to, cyclic frequency of the spatial charge wave; coo, frequency corresponding to the exact 
phase resonance; ¢'0, height of the metal-semiconductor potential barrier; U, external voltage; e, charge of the 

electron; m0, mass of the free electron; x, coordinate; L, width of the spatial-charge region; e,, and es, optical and 

dielectric permeability of the semiconductor;/t s, energy gap between the Fermi level in the semiconductor and the 

bottom of the conduction band; neon, equilibrium concentration of electrons in the alloyed region adjacent to the 
contact of the semiconductor; ns, equilibrium concentration of electrons in the volume of the semiconductor; nm, 

equilibrium concentration of electrons in the metal; T, temperature; "g'F, Fermi level; ~F0, Fermi level at T = 0 

K; kn, Boltzmann constant; /CA, Avogadro number; D, transparency of the potential barrier; ~ = h / 2 g ,  Planck 

constant; Pro, Ps, densities of the metal and the semiconductor, respectively; M, molar mass; m*, effective mass of 
the charge carrier in the semiconductor crystal; ra), effective mass of the density of states; m l, rat, longitudinal 

and transverse effective masses; ~,', energy of the electron; g'x, component of the kinetic energy of the electron 

specified by its motion in the x direction; W, potential energy; xl, x2, classical turning points; ke, magnitude of 
the wave vector of the electron; a, b, magnitudes of the wave vectors of the particle at the dividing lines of the 

barrier; ~b,  energy of the conduction band bottom of the semiconductor relative to the zero energy in the metal; 
ArE, Arx, energy gaps between the valleys; ra~., ra[, m~o effective masses of electrons in the F, L, and X valleys, 
respectively; at,, CtL, and a x, nonparabolicity coefficients of the F, L, and X valleys, respectively; E, E, intensity 

of the electrical field and its magnitude, respectively; Wac, probability of scattering of an electron on an acoustic 

phonon; Edef, effective constant of the deformation potential; Sl, longitudinal speed of sound; q, wave vector of the 
interacting phonon; qmin/max, minimum (maximum) wave vector of the interacting phonon; Nq, the number of 

thermo- dynamically equilibrium acoustic phonons; A -+, I~, coefficients related to the account for nonparabolicity; 

~ttOop, energy of the optical phonon; No, op, number of thermodynamically equilibrium optical phonons; lr, relaxation 
time; 5, tuning out from the exact-resonance frequency; ~,, increment of the spatial-charge wave; G, amplification 

of the spatial-charge wave. Abbreviations: FLX model, the model of the conduction band of GaAs with account for 
the F, L, and X valleys; SCW, spatial-charge wave; AD, avalanche diode; WKB approximatrion, Wentzel-Kramers  

-Brillouin approximation. Subscripts: F, X, L, the F, X, L valleys of the gallium arsenide conduction band, 

respectively; m, s, metal and semiconductor, respectively; l, t, longitudinal and transverse components; def, 

deformation; ac, acoustic; p.o, polar optical; op, optical; rain, max, minimum and maximum; x, the x coordinate; 

in, fin, initial and final, respectively; b, bottom of the conduction band. 
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